Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Aims. Globular clusters (GCs) are known to host distinct stellar populations, characterized by different chemical compositions. Despite extensive research, the origin of these populations remains elusive. According to many formation scenarios, the second population (2P) originated within a compact and denser region embedded in a more extended first population (1P) system. As a result, 2P binaries should be disrupted at a larger rate than 1P binaries. For this reason, binary systems offer valuable insight into the environments in which these stellar populations formed and evolved. Methods. We analyzed the fraction of binaries among 1P and 2P M dwarfs in the outer region of NGC 288 using Hubble Space Telescope data. We combined our results with those from a previous work, where we inferred the fraction of 1P and 2P binaries in the cluster center. Results. In the outer region, we find a predominance of 1P binaries (97−3+1%) compared to 2P binaries (3 ± 1%) corresponding to an incidence of binaries with a mass ratio (i.e., the ratio between the masses of the primary and secondary star) greater than 0.5 equal to 6.4 ± 1.7% for the 1P and 0.3 ± 0.2% for the 2P. These binary fractions and incidences differ from those found in the cluster’s central region, where the 1P and 2P exhibit similar binary incidences and fractions. These results are in general agreement with the predictions of simulations following the evolution of binary stars in multiple-population GCs, starting with a dense 2P subsystem concentrated in the central regions of a 1P system.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Recent work withJWSThas demonstrated its capability to identify and chemically characterize multiple populations in globular clusters down to the H-burning limit. In this study, we explore the kinematics of multiple populations in the globular cluster 47 Tucanae by combining data fromJWST, HST, Gaia, and ground-based telescopes. We analyzed velocity dispersion and anisotropy profiles from the cluster center out to ∼10Rh. Our findings indicate that while first population (1G) stars’ motions are isotropic, second population (2G) stars’ motions are significantly radially anisotropic. These results align with the predictions of simulations of the dynamical evolution of clusters where 2G stars are initially more centrally concentrated than 1G stars. Furthermore, we subdivided the 2G population into two subpopulations: 2GAand 2GB, with the latter being more chemically extreme. We compared their dynamical profiles and found no significant differences. For the first time, we measured the degree of energy equipartition among the multiple populations of 47 Tucanae. Overall, within the analyzed radial range (∼2–4Rh), both populations exhibit a low degree of energy equipartition. The most significant differences between 1G and 2G stars are observed in the tangential velocity component, where 2G stars are characterized by a stronger degree of energy equipartition than 1G stars. In the radial component, the behavior of 1G and 2G stars is more variable, with differences largely dependent on radius. Moreover, our analysis reveals that the ratio of rotational velocity to velocity dispersion is larger for the 2G population. Finally, we found that 1G stars exhibit a higher skewness in their tangential proper motions than 2G stars, providing additional evidence of kinematic differences between the two stellar generations.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            Almost all globular clusters (GCs) contain multiple stellar populations consisting of stars with varying helium and light-element abundances. These populations include first-population stars, which exhibit similar chemical compositions as halo-field stars with comparable [Fe/H], and second-population stars, characterized by higher helium and nitrogen abundances along with reduced levels of oxygen and carbon. Nowadays, one of the most intriguing open questions about GCs pertains to the formation and evolution of their multiple populations. Recent works based on N-body simulations of GCs show that the fractions and characteristics of binary stars can serve as dynamic indicators of the formation period of multiple-population GCs and their subsequent dynamical evolution. Nevertheless, the incidence of binaries among multiple populations is still poorly studied. Moreover, the few available observational studies focus only on the bright stars of a few GCs. We used deep images of the GC 47 Tucanae collected with theJames Webband theHubblespace telescopes to investigate the incidence of binaries among multiple populations of M dwarfs and bright main- sequence stars. To reach this objective, we used UV, optical, and near-infrared filters to construct photometric diagrams that allowed us to disentangle binary systems and multiple populations. Moreover, we compared these observations with a large sample of simulated binaries. In the cluster central regions, the incidence of binaries among first-population stars is only slightly higher than that of second- population stars. In contrast, in the external regions, the majority of the studied binaries (≳85%) are composed of first-population stars. These results are consistent with the GC formation scenarios in which the second-population stars originate in the cluster’s central region, forming a compact and dense stellar group within a more extended system of first-population stars.more » « lessFree, publicly-accessible full text available June 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
